UNLICENSED LTE & WIFI COEXISTENCE

Christopher Szymanski, Director of Global Regulatory Affairs
May 11, 2015
This presentation may contain forward-looking statements within the meaning of the federal securities laws, including the Private Securities Litigation Reform Act of 1995. These forward-looking statements may include the potential growth of the markets in which we compete and the development status and planned availability of new products. In fact, all statements that we make or incorporate by reference in the presentation, other than statements or characterizations of historical fact, are forward-looking statements. It should be clearly understood that these forward-looking statements, and our assumptions about the factors that influence them, are based on the limited information available to us at this date. Such information is subject to change, and we may not inform you when changes occur. We undertake no obligation to revise or update publicly any forward-looking statement to reflect future events or circumstances.

Forward-looking statements are not guarantees of future results and are subject to risks, uncertainties and assumptions that are difficult to predict. Therefore, our actual results could differ materially and adversely from those described in the statements you hear today as a result of various factors. We refer you to our Form 10-K for the year ended December 31, 2014, subsequent and forthcoming 10-Qs and other filings with the SEC, which discuss some of the important risk factors that could contribute to such differences or otherwise affect our business, results of operations and financial condition.

For additional financial and statistical information, including the information disclosed in accordance with SEC Regulation G, please see the Investors section of our website.

All financials in USD.

© 2015 Broadcom Corporation. All rights reserved.
BROADCOM AT A GLANCE

Fortune 300 GLOBAL leader in semiconductors for wired and wireless communications

One of TOP 5 semiconductor companies by revenue*

2014 Revenue: $8.43B

One of the industry’s broadest IP portfolios with >20,000 U.S. and foreign patents and applications

HQ in Irvine, California with DESIGN CENTERS around the world

~10,000 global employees

One of the LARGEST VOLUME fabless semiconductor suppliers

Ships ~7M chips a day

© 2015 Broadcom Corporation. All rights reserved.
TECHNOLOGY LEADERSHIP FUELING CUSTOMER EXPANSION

Infrastructure & Networking Group

Broadband & Connectivity Group

© 2015 Broadcom Corporation. All rights reserved.
99.98% of All Data Traffic Crosses at Least One Broadcom Chip

Source: Broadcom internal estimate
LTE-U / LAA & WIFI COEXISTENCE
LTE-U & LAA are envisioned to complement existing LTE networks with carriers in unlicensed band (5 GHz)

- LTE-U: Pre standard version
- LAA: Version currently being standardized in 3GPP

Initially LTE-U & LAA deployments are expected to be for downlink traffic only on LAA carriers, but later to encompass uplink

Only best effort data to be serviced by the unlicensed band

- QoS sensitive applications such as video and voice continue to use licensed band

Primarily restricted to small-cell usage models
Source: ABI Research: Cumulative Wi-Fi-enabled Product Shipments and Installed Base of Wi-Fi-enabled Products World Market, Forecast: 2000 to 2020.
WI-FI SERVICE PROVIDERS NEED LTE-U/LAA IN HARMONY WITH WI-FI IN 5 GHZ FOR QUALITY VIDEO AND VOICE

- LTE-U/LAA providers have licensed airwaves for voice and video; Other service providers rely solely on Wi-Fi
- Voice and video quality over Wi-Fi must be preserved
- So, are LTE-U/LAA polite enough?
“Old” Wi-Fi configurations are being used in some of the coexistence studies.
Objective: Test VoIP latency when LTE-U and Wi-Fi operate simultaneously

Scenario: Moderately dense indoor deployment
- 4 Wi-Fi AP’s in network A
- 4 LAA nodes (or Wi-Fi nodes) in network B
- 10 data users in each network
- 2 Wi-Fi VoIP users in network A

Results: Average 98 %ile Latency (ms) measured as nominal user requirement
- 44ms when both networks are on Wi-Fi
- 600ms when LAA is active and using only baseline coexistence protocols adhering to EU regulations
- 43ms if robust coexistence is implemented

Wi-Fi VoIP Average 98%ile Latency (ms)
For LAA protocol alternatives

Robust coexistence mechanism needed to guarantee VoIP quality (~50 ms latency) in Wi-Fi deployments
Objective: Test if Wi-Fi speeds can exceed video needs of 20 Mbps when LTE-U and Wi-Fi operate simultaneously

Scenario: Moderately dense indoor deployment
- 4 Wi-Fi AP’s in network A
- 4 LAA nodes (or Wi-Fi nodes) in network B
- 10 data users in each network
- 2 Wi-Fi VoIP users in network A

Results: Average Wi-Fi speeds
- 33 Mbps when both networks are on Wi-Fi
- 19 Mbps when LAA is active and using only baseline coexistence protocols adhering to EU regulations
- 34 Mbps if robust coexistence is implemented

Without Robust coexistence mechanisms, throughput needs for video data (~20 Mbps) will not be met for moderately dense deployments.
Broadcom suggests standardization of at least a three-pronged approach to healthy coexistence among broadband unlicensed technologies:

- Let other data transmissions and handshake mechanisms complete before transmitting; be adaptive to current occupants
 - Solution: LTE-U/LAA should deliberately wait for a nominally acceptable time before transmissions
 - Possible Technical solution: Initial wait for ~43 microseconds prior to arbitration - similar to Wi-Fi

- Back-off transmissions rapidly when significant interference with other users is detected; be adaptive to congestion
 - Solution: LTE-U/LAA should implement technologies similar to those in Wi-Fi such as “Exponential Back-off” which defer transmissions upon detection of interference

- Detect signals that are far below regulatory requirements to maintain thriving unlicensed ecosystem
 - Solution: Match Wi-Fi mechanisms, which detect signals as weak as 1000 times below regulatory requirements
 - Possible Technical solution: LTE-U/LAA should operate at -82 dBm to -92 dBm for preamble or carrier sense detection and at -62 dBm energy detection assuming 20 MHz signal bandwidth
THANK YOU